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1 Introduction and summary

One of the major successes of string theory has been the matching of the Bekenstein-

Hawking entropy of a class of extremal black holes and the statistical entropy of a system

of branes carrying the same quantum numbers as the black hole [1]. The initial comparison

between the two was done in the limit of large charges. In this limit the analysis simplifies

on both sides. On the gravity side we can restrict our analysis to two derivative terms in

the action, while on the statistical side the analysis simplifies because we can use certain

asymptotic formula to estimate the degeneracy of states for large charges. However given

the successful matching between the statistical entropy and Bekenstein-Hawking entropy

in the large charge limit, it is natural to explore whether the agreement continues to hold

beyond this approximation. On the gravity side this requires taking into account the effect

of higher derivative corrections and quantum corrections in computing the entropy. The

effect of higher derivative terms is captured by the Wald’s generalization of the Bekenstein-

Hawking formula [2]. For extremal black holes this leads to the entropy function formalism

for computing the entropy [3]. Recently it has been suggested that the effect of quantum

corrections to the entropy of extremal black holes is encoded in the quantum entropy func-

tion, defined as the partition function of string theory on the near horizon geometry of the

black holes [4]. On the other hand computing higher derivative corrections to the statis-

tical entropy requires us to compute microscopic degeneracies of the black hole to greater

accuracy. Here significant progress has been made in a class of N = 4 supersymmetric field

theories, for which we now have exact formulæ for the microscopic degeneracies [5–29].

(For a similar proposal in N = 2 supersymmetric theories, see [30].)

Our eventual goal is to compare the statistical entropy computed from the exact de-

generacy formula to the predicted result on the black hole side from the computation of

the quantum entropy function (or whatever formula gives the exact result for the entropy

– 1 –



J
H
E
P
0
5
(
2
0
0
9
)
1
2
1

of extremal black holes). However in practice we can compute the black hole side of the

result only as an expansion in inverse powers of charges, by matching these to an expan-

sion in powers of derivatives / string coupling constant. Thus we must carry out a similar

expansion of the statistical entropy if we want to compare the results on the two sides. A

systematic procedure for developing such an expansion of the statistical entropy has been

discussed in [5, 6, 10, 13]. Our main goal in this paper is to explore this expansion in more

detail, and. to whatever extent possible, relate it to the results of macroscopic computation.

The rest of the paper is organized as follows. In § 2 we give a brief overview of the

exact dyon degeneracy formula in a class of N = 4 supersymmetric string theories, and

discuss the systematic procedure of extracting the degeneracy for large but finite charges.

We also organise the computation of the statistical entropy by representing the result as a

sum of contributions from single centered and multi-centered black holes, and then express

the single centered black hole entropy as an asymptotic expansion in inverse powers of

charges, together with exponentially suppressed corrections. In § 3 we examine the leading

exponential term in the expression for the statistical entropy and compute the statistical

entropy to order 1/charge2. Previous computation of the statistical entropy was carried

out to order charge0. We compare these results with the exact result for the statistical

entropy and find good agreement. We also find that the agreement is worse if we compare

the result with the exact statistical entropy in a domain where besides single centered

black holes, we also have contribution from two centered black holes. This confirms that

the asymptotic expansion is best suited for computing the entropy of single centered black

holes. From the gravity perspective these corrections should be captured by six derivative

corrections to the effective action; however explicit analysis of such contributions has not

been carried out so far.

In § 4 we analyze the contribution from the exponentially subleading terms to the

entropy of single centered black holes. While power suppressed corrections to the statistical

entropy have been compared to the higher derivative corrections to the black hole entropy

in various approximations, so far there has been no explanation of these exponentially

suppressed terms from the black hole side.1 In § 5 we suggest a macroscopic origin of

the exponentially suppressed contributions to the entropy from quantum entropy function

formalism. In this formalism the leading contribution to the macroscopic degeneracy comes

from path integral over the near horizon AdS2 geometry of the black hole with appropriate

boundary condition. We show that for the same boundary conditions there are other saddle

points which have different values of the euclidean action. These values have precisely

the form needed to reproduce the exponentially suppressed contributions to the leading

microscopic degeneracy.

2 An overview of statistical entropy function

In this section, we briefly review the systematic procedure for computing the asymptotic

expansion of the statistical entropy of a dyon in a class of N = 4 supersymmetric string

theories. The approach mainly follows [5, 6, 10, 13, 22]. Our notation will be that of [23].

1Note that this expansion is quite different from the Rademacher expansion studied in [31, 32] since we

scale all the charges uniformly.
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2.1 Dyon degeneracy

Let us consider an N = 4 supersymmetric string theory with a rank r gauge group. We

shall work at a generic point in the moduli space where the unbroken gauge group is U(1)r.

The low energy supergravity describing this theory has a continuous SO(6, r−6)×SL(2,R)

symmetry which is broken to a discrete subgroup in the full string theory. We denote by Q

and P the r dimensional electric and magnetic charges of the theory, by L the SO(6, r− 6)

invariant metric and by (Q2, P 2, Q · P ) the combinations (QTLQ,P TLP,QTLP ). Then

for a fixed set of values of discrete T-duality invariants the degeneracy d(Q,P ), – or more

precisely the sixth helicity trace B6 [33] — of a dyon carrying charges (Q,P ) is given by a

formula of the form:

d(Q,P ) = (−1)Q·P+1 1

a1a2a3

∫

C

dρ̌ dσ̌ dv̌ e−πi(ρ̌P 2+σ̌Q2+2v̌Q·P ) 1

Φ̌(ρ̌, σ̌, v̌)
, (2.1)

where ρ̌ ≡ ρ̌1 + iρ̌2, σ̌ ≡ σ̌1 + iσ̌2 and v̌ ≡ v̌1 + iv̌2 are three complex variables, Φ̌ is a

function of (ρ̌, σ̌, v̌) which we shall refer to as the inverse of the dyon partition function,

and C is a three real dimensional subspace of the three complex dimensional space labeled

by (ρ̌, σ̌, v̌), given by

ρ̌2 = M1, σ̌2 = M2, v̌2 = M3,

0 ≤ ρ̌1 ≤ a1, 0 ≤ σ̌1 ≤ a2, 0 ≤ v̌1 ≤ a3 . (2.2)

The periods a1, a2 and a3 of ρ̌, σ̌ and v̌ are determined by the the quantization laws of Q2,

P 2 and Q ·P . M1, M2 and M3 are large but fixed numbers. The choice of the Mi’s depend

on the domain of the asymptotic moduli space in which we want to compute d(Q,P ). As we

move from one domain to another crossing the walls of marginal stability, d(Q,P ) changes.

However this change is captured completely by a deformation of the contour labelled by

(M1,M2,M3) without any change in the partition function Φ̌ [17, 18]. A simple rule that

expresses (M1,M2,M3) in terms of the asymptotic moduli is [21]:

M1 = Λ


 |λ|2
λ2

+
Q2

R√
Q2

RP
2
R − (QR · PR)2


 ,

M2 = Λ


 1

λ2
+

P 2
R√

Q2
RP

2
R − (QR · PR)2


 ,

M3 = −Λ


λ1

λ2
+

QR · PR√
Q2

RP
2
R − (QR · PR)2


 , (2.3)

where Λ is a large positive number,

Q2
R = QT (M + L)Q, P 2

R = P T (M + L)P, QR · PR = QT (M + L)P , (2.4)

λ ≡ λ1 + iλ2 denotes the asymptotic value of the axion-dilaton moduli which belong to

the gravity multiplet and M is the asymptotic value of the r× r symmetric matrix valued

moduli field of the matter multiplet satisfying MLMT = L.
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A special point in the moduli space is the attractor point corresponding to the charges

(Q,P ). If we choose the asymptotic values of the moduli fields to be at this special point

then all multi-centered black hole solutions are absent and the corresponding degeneracy

formula captures the degeneracies of single centered black hole only [21]. This attractor

point corresponds to the choice of (M,λ) for which

Q2
R = 2Q2, P 2

R = 2P 2, QR · PR = 2Q · P, λ2 =

√
Q2P 2 − (Q · P )2

P 2
, λ1 =

Q · P
P 2

.

(2.5)

Substituting this into (2.3) we get

M1 = 2Λ
Q2

√
Q2P 2 − (Q · P )2

,

M2 = 2Λ
P 2

√
Q2P 2 − (Q · P )2

, (2.6)

M3 = −2Λ
Q · P√

Q2P 2 − (Q · P )2
.

We can invert the Fourier integrals (2.1) by writing

d(Q,P ) = (−1)Q·P+1 g

(
1

2
P 2,

1

2
Q2, Q · P

)
, (2.7)

where g(m,n, p) are the coefficients of Fourier expansion of the function 1/Φ̌(ρ̌, σ̌, v̌):

1

Φ̌(ρ̌, σ̌, v̌)
=
∑

m,n,p

g(m,n, p) e2πi(m ρ̌+n σ̌+p v̌) . (2.8)

Different choices of (M1,M2,M3) in (2.1) will correspond to different ways of expanding

1/Φ̌ and will lead to different g(m,n, p). Conversely, for d(Q,P ) associated with a given

domain of the asymptotic moduli space, if we define g(m.n, p) via eq. (2.7), then the

choice of (M1,M2,M3) is determined by requiring that the series (2.8) is convergent for

(ρ̌2, σ̌2, v̌2) = (M1,M2,M3).

A special case on which we shall focus much of our attention is the N = 4 super-

symmetric string theory obtained by compactifying type IIB string theory on K3 × T 2 or

equivalently heterotic string theory compactified on T 6. In this case the function Φ̌ is given

by the well known Igusa cusp form of weight 10 [34, 35]:

Φ̌(ρ̌, σ̌, v̌) = Φ10(ρ̌, σ̌, v̌) = e2πi(ρ̌+σ̌+v̌)
∏

k′,l,j∈zz
k′,l≥0;j<0 for k′=l=0

(
1 − e2πi(σ̌k′+ρ̌l+v̌j)

)c(4lk′−j2)
,

(2.9)

where c(u) is defined via the equation [36]

8

[
ϑ2(τ, z)

2

ϑ2(τ, 0)2
+
ϑ3(τ, z)

2

ϑ3(τ, 0)2
+
ϑ4(τ, z)

2

ϑ4(τ, 0)2

]
=
∑

j,n∈zz
c(4n − j2) e2πinτ+2πijz . (2.10)
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2.2 Asymptotic expansion and statistical entropy function

In order to compare the statistical entropy Sstat(Q,P ) ≡ ln d(Q,P ) with the black hole

entropy we need to extract the behaviour of Sstat(Q,P ) for large charges. We shall now

briefly review the strategy and the results. For details the reader is referred to [22].

1. Beginning with the expression for d(Q,P ) given in (2.1), we first deform the contour to

small values of (ρ̌2, σ̌2, v̌2) (say of the order of 1/charge). In this case the contribution

to Sstat from the deformed contour can be shown to be subleading, and hence the

major contribution comes from the residue at the poles picked up by the contour

during the deformation.

2. For any given pole, one of the three integrals in (2.1) can be done using residue theo-

rem. The integration over the other two variables are carried out using the method of

steepest descent. It turns out that in all known examples, the dominant contribution

to Sstat computed using this procedure comes from the pole of the integrand ı.e. zero

of Φ̌ at

ρ̌σ̌ − v̌2 + v̌ = 0 . (2.11)

Furthermore near this pole Φ̌ behaves as

Φ̌(ρ̌, σ̌, v̌) ∝ (2v − ρ− σ)k v2 g(ρ) g(σ) , (2.12)

where

ρ =
ρ̌σ̌ − v̌2

σ̌
, σ =

ρ̌σ̌ − (v̌ − 1)2

σ̌
, v =

ρ̌σ̌ − v̌2 + v̌

σ̌
, (2.13)

k is related to the rank r of the gauge group via the relation

r = 2k + 8 , (2.14)

and g(τ) is a known function which depends on the details of the theory. Typically

it transforms as a modular function of weight (k + 2) under a certain subgroup of

the SL(2,Z) group. In the (ρ, σ, v) variables the pole at (2.11) is at v = 0. The

constant of proportionality in (2.12) depends on the specific N = 4 string theory we

are considering, but can be calculated in any given theory.

3. Using the residue theorem the contribution to the integral (2.1) from the pole at (2.11)

can be brought to the form

eSstat(Q,P ) ≡ d(Q,P ) ≃
∫
d2τ

τ2
2

e−F (~τ) , (2.15)

where τ1 and τ2 are two complex variables, related to ρ and σ via

ρ ≡ τ1 + iτ2 , σ ≡ −τ1 + iτ2 , (2.16)

– 5 –
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and

F (~τ ) = −
[
π

2τ2
|Q− τP |2 − ln g(τ) − ln g(−τ̄ ) − (k + 2) ln(2τ2)

+ ln

{
K0

(
2(k + 3) +

π

τ2
|Q− τP |2

)}]
,

K0 = constant . (2.17)

Even though τ1 and τ2 are complex, we have used the notation τ = τ1 + iτ2, τ̄ =

τ1 − iτ2, |τ |2 = τ τ̄ , and |Q − τP |2 = (Q − τP )(Q − τ̄P ). Note that F (~τ ) also

depends on the charge vectors (Q,P ), but we have not explicitly displayed these in

its argument. The ≃ in (2.15) denotes equality up to the (exponentially subleading)

contributions from the other poles.

4. We can analyze the contribution to (2.13) using the saddle point method. To leading

order the saddle point corresponds to the extremum of the first term in the right

hand side of (2.17). This gives

τ1 =
Q · P
P 2

, τ2 =

√
Q2P 2 − (Q · P )2

P 2
. (2.18)

Using (2.13), (2.16) we get

(ρ̌, σ̌,−v̌) =
i

2
√
Q2P 2 − (Q · P )2

(Q2, P 2, Q · P ) −
(

0, 0,
1

2

)
. (2.19)

We can regard the result for −Sstat as the extremal value of the 1PI effective action in

the zero dimensional quantum field theory, with fields τ, τ̄ (or equivalently τ1, τ2) and

action F (~τ) − 2 ln τ2. A manifestly duality invariant procedure for evaluating Sstat

was given in [13] using background field method and Riemann normal coordinates.

The final result of this analysis is that Sstat is given by

Sstat ≃ −ΓB(~τB) at
∂ΓB(~τB)

∂~τB
= 0 , (2.20)

where ΓB(~τB) is the sum of 1PI vacuum diagrams calculated with the action

∞∑

n=0

1

n!
(τB2)

nξi1 . . . ξin Di1 · · ·DinF (~τ)

∣∣∣∣
~τ=~τB

− lnJ (~ξ) , (2.21)

where

J (~ξ) =

[
1

|ξ| sinh |ξ|
]
, |ξ| ≡

√
ξ̄ξ . (2.22)

Here ~τB is a fixed background value, ξ, ξ̄ are zero dimensional quantum fields and

Dτ (D
m
τ D

n
τ̄ F (~τ)) = (∂τ − im/τ2)(D

m
τ D

n
τ̄ F (~τ )),

Dτ̄ (D
m
τ D

n
τ̄ F (~τ)) = (∂τ̄ + in/τ2)(D

m
τ D

n
τ̄ F (~τ )) , (2.23)

for any arbitrary ordering of Dτ and Dτ̄ in Dm
τ D

n
τ̄ F (~τ).
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This finishes the required background for generating the asymptotic expansion of the sta-

tistical entropy to any given order in inverse powers of charges, — all we need is to compute

ΓB(τB) to the desired order and then find its value at the extremum. The function −ΓB(τB)

is called the statistical entropy function.

2.3 Exponentially suppressed corrections

In our analysis we shall also be interested in studying the exponentially subleading con-

tribution to the statistical entropy. These come from picking up the residues at the other

zeroes of Φ̌. The details of the analysis has been reviewed in [22]; here we summarize the

results for the special case of heterotic string theory on T 6 [5]. In this case k = 10, Φ̌ is

given by the Siegel modular form Φ10, and the periods (a1, a2, a3) are all equal to 1. Φ10

has second order zeroes at

n2(σ̌ρ̌− v̌2) + jv̌ + n1σ̌ −m1ρ̌+m2 = 0,

for m1, n1,m2, n2 ∈ Z, j ∈ 2Z + 1, m1n1 +m2n2 +
j2

4
=

1

4
. (2.24)

Since eqs. (2.24) are invariant under (~m,~n, j) → (−~m,−~n,−j), we can use this symmetry

to set n2 ≥ 0. For any given n2 ≥ 1 we can use the symmetry of Φ10 under integer shifts

in (ρ̌, σ̌, v̌) to bring m1, n1 and j in the range

0 ≤ n1 ≤ n2 − 1, 0 ≤ m1 ≤ n2 − 1, 0 ≤ j ≤ 2n2 − 1 . (2.25)

Using this symmetry we can fix (m1, n1, j) in this range, but then we must extend the

integration range over (ρ1, σ1, v1) to be over the whole real axes. For given n2, m1, n1,

j, the last equation in (2.24) then determines m2 in terms of the other variables. This

equation also forces j to be odd, and m1n1 + (j2 − 1)/4 to be an integer multiple of n2.

We can now evaluate the contribution from each of these poles using saddle point method.

To leading order the location of the saddle point from the pole associated with a given set

of values of mi, ni and j is given by [5, 22]

(ρ̌, σ̌,−v̌) =
i

2n2

√
Q2P 2 − (Q · P )2

(Q2, P 2, Q · P ) − 1

n2

(
n1,−m1,

j

2

)
. (2.26)

For n2 = 1 we can choose n1 = m1 = 0, j = 1 and (2.26) reduces to (2.11).

Besides these there are also contributions from the poles corresponding to n2 = 0.

These are in fact the poles responsible for the jump in the degeneracy as we cross walls of

marginal stability [17]. In particular for the wall associated with a decay of the form

(Q,P ) → (Q1, P1) + (Q2, P2) , (2.27)

(Q1, P1) = (αQ+ βP, γQ+ δP ), (Q2, P2) = (δQ− βP,−γQ+ αP ) , (2.28)

αδ = βγ, α+ δ = 1 , (2.29)

the jump in the index is given by the residue at the pole at

ρ̌γ − σ̌β + v̌(α− δ) = 0 . (2.30)

– 7 –
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Unlike the residues from the poles at (2.24), which grow as exponentials of quadratic

powers of charges, the residues at the poles at (2.30) grow as exponentials of linear powers

of charges. Thus one expects them to be suppressed compared to the contribution from

all other poles of the form given in (2.24). Nevertheless we shall see that for small charges

the residues at (2.30) give substantial subleading contribution to the statistical entropy.

2.4 Organising the asymptotic expansion

Consider the contour integral given in (2.1) with (M1,M2,M3) given as in (2.3). In order

to find the asymptotic expansion of this expression we need to deform the contour so that

it passes through the saddle point. Since the integral is done over the real parts of (ρ̌, σ̌, v̌)

keeping their imaginary parts fixed, we shall deform the contour by varying the imaginary

parts (ρ̌2, σ̌2, v̌2) of (ρ̌, σ̌, v̌). For this we first note that in the (ρ̌2, σ̌2, v̌2) space, the point

(M1,M2,M3) given in (2.6) corresponding to the choice of the contour for single centered

black holes, and the values of (ρ̌2, σ̌2, v̌2) given in (2.26) corresponding to various saddle

points, lie along a straight line passing through the origin:

ρ̌2

Q2
=
σ̌2

P 2
= − v̌2

Q · P . (2.31)

Thus we can first deform the contour from its initial position to the position (2.6), keeping

Im(ρ̌, σ̌, v̌) large all through, and then deform it along a straight line towards the origin.

In the first step we shall only cross the poles of the type given in (2.30). This picks up

the contribution to the entropy from the multi-centered black holes which were present at

the point in the moduli space where we are computing the entropy. In the second stage

we pick up the contribution from all the saddle points with n2 ≥ 1, but do not cross any

pole of the type given in (2.30). These can then be regarded as the contribution to the

entropy of a pure single centered black hole. Thus we see that the complete contribution

to single centered black hole entropy comes from residues at the poles (2.24) with n2 ≥ 1.

This suggests that at least for finite values of charges where the jumps across the walls

of marginal stability are not extremely small compared to the total index, the asymptotic

expansion, based on the residues at the poles at (2.24) with n2 ≥ 1, is better suited for

reproducing the entropy of single centered black holes than that of single and multi-centered

black holes together. We shall see this explicitly in our numerical analysis.

3 Power suppressed corrections

In § 2 we outlined a general procedure for computing the statistical entropy as an expansion

in inverse powers of charges. In this section we shall use this method to compute the

statistical entropy to order 1/q2 where q stands for a generic charge. For comparison we

note that the leading correction to the entropy is quadratic in the charges. Contribution

to Sstat up to order q0 has been computed in [6, 10, 13].

We begin with the expression for F (~τ ) given in (2.17) and carry out the background

field expansion as described in (2.21). For this we organise (2.21) as a sum of three terms

F (~τ ) − lnJ (~ξ) = F0 + F1 + F2 (3.1)

– 8 –
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where

F0 = − π

2τ2
|Q− τP |2 ,

F1 = ln g(τ) + ln g(−τ̄ ) + (k + 2) ln(2τ2) − lnJ (~ξ) − ln

[
K0

π

τ2
|Q− τP |2

]
,

F2 = − ln

[
1 +

2(k + 3)τ2
π|Q− τP |2

]
, (3.2)

represent respectively the leading piece of order q2, the O(q0) piece and all terms of the

order q−2n, n ≥ 1. Since the loop expansion is an expansion in powers of q−2, in order to

carry out a systematic expansion in powers of q−2 we need to regard F0 as the tree level

contribution, F1 as the 1-loop contribution and F2 as two and higher loop contributions.

To compute ΓB up to a certain order, we need to compute 1PI vacuum diagrams in the

zero dimensional field theory with action (F0 + F1 + F2) up to that order regarding ξ as

fundamental field. Thus for example in order to compute the contribution to ΓB to order

q−2 we need to include all one and two loop diagrams involving vertices from F0, all one

loop diagrams involving a single vertex of F1 and the tree level contribution from F0, F1

and F2.

To see more explicitly how the powers of q appear, we expand F (~τ) in field variable ξ

around the background point ~τB. We then identify the quadratic term in ξ in the leading

action F0 with the inverse propagator and all other terms (including quadratic terms in

the expansion of F1 and F2) as vertices. Since F0 is of order q2, this gives a propagator

of order q−2. All vertices coming from F0 are of order q2, all vertices coming from F1 are

of order q0 and the vertices coming from F2 are of order q−2n with n ≥ 1. Let us now

consider a 1PI vacuum diagram with Vn number of n-th order vertices coming from F0.

Since there are no external legs, we have
∑

n nVn/2 propagators. Thus the contribution

from this diagram goes as

q
P

n(2−n)Vn . (3.3)

Similar counting works for vertices coming from F1 and F2, but every vertex coming from

F1 will carry an extra power of q−2 and every vertex coming from F2 will carry two or more

extra powers of q−2. Thus an order q−2 contribution to the effective action can come from

(V4 = 1, Vn = 0 for n 6= 4) or (V3 = 2, Vn = 0 for n 6= 3) , (3.4)

if all the vertices are from F0, and

V2 = 1, Vn = 0 for n 6= 2 , (3.5)

if this single two point vertex is from F1.
2 The possible diagrams associated with (3.4)

have been shown in figure 1 whereas the diagram associated with (3.5) have been shown in

figure 2. Finally the order q−2 contribution from F2 is obtained by just adding the F2(τB)

term to ΓB(τB).

2Note that F0 does not give a two point vertex.
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Figure 1. 2-loop graphs using the vertices from F0.

C
Figure 2. 1-loop graph using a 2-vertex from F1.

The above analysis shows that in order to calculate the contribution to ΓB up to order

q−2, we need to expand F0(~τ ) to quartic order in ~ξ, and F1(~τ) to quadratic order in ~ξ. This

is done with the help of (2.21), (2.23). We get3

F0(~τ) = F0(~τB) − iπ

4τB2

{
ξ(Q− τ̄BP )2 − ξ̄(Q− τBP )2

}
− π

4τB2
|Q− τBP |2 ξ̄ξ

+
iπ

24τB2

{
(Q− τBP )2ξ̄2ξ − (Q− τ̄BP )2ξ2ξ̄

}
− π

48τB2
|Q− τBP |2 ξ̄2ξ2 ,

F1(~τ) = F1(~τB) + τB2

[{
g′(τB)

g(τB)
+

k + 2

τB − τ̄B
+

1

τB − τ̄B

(Q− τ̄BP )2

|Q− τBP |2
}
ξ + c.c.

]

−
{
k + 4

4
− (Q− τBP )2(Q− τ̄BP )2

4 (|Q− τBP |2)2
+

1

6

}
ξξ̄ + O(ξ2, ξ̄2) . (3.6)

The quadratic term in the expansion of F0(~τ) gives the propagator

M ξξ̄ = M ξ̄ξ = − 4τB2

π|Q− τBP |2
, M ξξ = M ξ̄ξ̄ = 0 . (3.7)

Using the vertices we can evaluate the order q−2 contribution to ΓB shown in the three

3Whenever a τ (τB) appears without a vector sign, it should be interpreted as τ1 + iτ2 (τB1 + iτB2).
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diagrams in figures 1 and 2. The results are

A = − 2τB2

3π|Q− τBP |2
,

B =
2τB2(Q− τBP )2(Q− τ̄BP )2

9π(|Q− τBP |2)3
,

C =
2τB2

3π|Q− τBP |2
+

(4 + k)τB2

π|Q− τBP |2
− τB2(Q− τBP )2(Q− τ̄BP )2

π (|Q− τBP |2)3
. (3.8)

Combining this with the order q2 and q0 contribution to ΓB given in [13], the complete

statistical entropy function goes as,

ΓB(~τB) = F0(~τB) + F1(~τB) + F2(~τB) − ln(π |M ξξ̄|) +A+B +C

= Γ0(~τB) + Γ1(~τB) + Γ2(~τB)

Γ0(~τB) = − π

2τB2
|Q− τBP |2,

Γ1(~τB) = ln g(τB) + ln g(−τ̄B) + (k + 2) ln(2τB2) − ln(4πK0)

Γ2(~τB) = − τB2

π|Q− τBP |2
(

(k + 2) +
7

9

(Q− τBP )2(Q− τ̄BP )2

(|Q− τBP |2)2
)
. (3.9)

The last term in Γ2(~τB) vanishes at the extremum of Γ0(~τB) where

τB2 =

√
Q2P 2 − (Q · P )2

P 2
, τB1 =

Q · P
P 2

(3.10)

We can therefore get rid of this term by doing a field redefinition. Using this we can write

Γ2(~τB) = − τB2

π|Q− τBP |2
(k + 2) . (3.11)

We now note that Γ2(~τB) is independent of the modular form g(τ). This fact has some

important implications for our result; we will come back to it at the end of this section.

We can now extremize ΓB(~τB) given in (3.9) with respect to ~τB to evaluate the black-

hole entropy up to this order. For this it is enough to find the location of the extremum

to order 1/q2. Let ~τ(0) be the extremum of F0(~τB) given in (3.10). By extremizing F0 +F1

we can find the extremum to order 1/q2. We get

τ = τ(0) +
2
√
Q2P 2 − (Q · P )2

π(P 2)2
∂Γ1

∂τ
+ O(1/q4) , (3.12)

where the derivative of Γ1 is taken at fixed τ̄ . Substituting this in the argument of the Γi’s

we get

Sstat = −Γ0 − Γ1 − Γ2 = S(0) + S(1) + S(2), (3.13)

where

S(0) = π
√
Q2P 2 − (Q · P )2

S(1) = − ln g(τ(0)) − ln g(−τ̄(0)) − (k + 2) ln(2τ(0)2) + ln(4πK0)

S(2) =
2 + k

2π
√
Q2P 2 − (Q · P )2

+

[(
g′(τ(0))

g(τ(0))
+

k + 2

τ(0) − τ̄(0)

)(
g′(−τ̄(0))
g(−τ̄(0))

+
k + 2

τ(0) − τ̄(0)

)]

×
4τ3

(0)2

π|Q− τ(0)P |2
. (3.14)
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Q2 P 2 Q · P d(Q,P ) Sstat S
(0)
stat S

(1)
stat S

(2)
stat D1 D2

2 2 0 50064 10.82 6.28 10.62 11.576 .2 -0.756

4 4 0 32861184 17.31 12.57 16.90 17.382 .41 -0.072

6 6 0 16193130552 23.51 18.85 23.19 23.506 .32 .004

8 8 0 7999169992704 29.71 25.13 29.47 29.71 .24 .000

10 10 0 4074192429737760 35.943 31.42 35.754 35.945 .189 -0.002

6 6 1 11232685725 23.14 18.59 22.88 23.15 .26 -0.01

6 6 2 4173501828 22.15 17.77 21.94 22.198 .21 -0.05

6 6 3 920577636 20.64 16.32 20.41 20.766 .23 -0.13

6 6 -1 11890608225 23.19 18.59 22.88 23.15 .31 .04

6 6 -2 2857656822 21.77 17.77 21.94 22.198 -0.17 -0.43

6 6 -3 2894345136 21.78 16.32 20.41 20.766 1.37 1.01

Table 1. Comparison of the exact statistical entropy to the tree level, one loop and two loop results

obtained via the asymptotic expansion. In the last two columns D1 is the difference of the exact

result and the one loop result and D2 is the difference of the exact result and the two loop result.

We clearly see that for Q ·P > 0 where only single centered black holes contribute to Sstat, inclusion

of the two loop results reduces the error, at least for large charges.

For type IIB string theory compactified on K3 × T 2, k = 10, g(τ) = η(τ)24 and

4πK0 = 1. We have shown in table 1 the approximate statistical entropies S
(0)
stat = S(0)

calculated with the ‘tree level’ statistical entropy function, S
(1)
stat = S(0) + S(1) calculated

with the ‘tree level’ plus ‘one loop’ statistical entropy function and S
(2)
stat = S(0) +S(1) +S(2)

calculated with the ‘tree level’ plus ‘one loop’ plus ‘two loop’ statistical entropy function

and compared the results with the exact statistical entropy Sstat. The exact results for

d(Q,P ) are computed using a choice of contour for which only single centered black holes

contribute to the index for Q · P > 0 and both single and 2-centered black hole solutions

contribute for Q·P < 0. We clearly see that the asymptotic expansion has better agreement

with the exact results when only single centered black holes are present, in accordance with

our general argument.

Given the result for the statistical entropy to this order, one would like to see if this

can be reproduced from the macroscopic calculation on the black hole side. So far black

hole entropy calculation has been done for the leading supergravity action and a subset

of the four derivative terms which include curvature squared contribution to the effective

action [37–40]. The results of these two completely independent calculations match up

to order q0 and give us enough confidence on the expected equivalence of the statistical
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entropy and the black hole entropy. However there are many open issues. Even at the level

of the four derivative terms, only a subset of the four derivative terms have been included in

the analysis of the black hole entropy. Furthermore at this order the full 1PI effective action

of string theory also contains non-local terms from integrating out the massless fermions

and Wald’s formula cannot even be applied in principle to take into account the effect of

these terms. Recently a generalization of the Wald’s formula for extremal black holes in

the full quantum theory has been proposed [4] (see also [41, 42]). This will be discussed in

more detail in § 5 in the context of exponentially suppressed terms. However as far as the

power law corrections are concerned, at present we do not have a complete calculation of

the quantum entropy function for quarter BPS black holes in N = 4 supersymmetric theory

even at the level of order q0 terms. This prevents us from making a concrete statement on

the agreement between the two entropies.4

Given that even at order q0 we do not have a complete test of the equality between

the microscopic and the macroscopic calculations, we cannot hope to have such a test

for the order q−2 terms calculated here. However we can say a few words about the

possible contributions on the macroscopic side which is needed to reproduce the order q−2

corrections to the statistical entropy. To this end we note that the order q−2 correction

to the statistical entropy function ΓB(~τB) given in (3.11) is manifestly invariant under

continuous duality transformation

τ → aτ + b

cτ + d
,

(
Q

P

)
→
(
a b

c d

)(
Q

P

)
, ad− bc = 1, a, b, c, d ∈ R . (3.15)

Now while comparing the statistical entropy function to the black hole entropy function,

the parameters τ get identified with the near horizon axion-dilaton modulus λ in the

heterotic description [6, 10, 13]. This suggests that if the required correction comes from

a local correction to the 1PI action, then the corresponding term must be invariant under

a continuous S-duality transformation. Furthermore since we are looking for a correction

of order q−2, we require the correction to the Lagrangian density to be a six derivative

term. This puts a strong restriction on the type of contribution to the local Lagrangian

density that can be responsible for such corrections. We have not been able to find a

candidate Lagrangian density. The most straightforward method for constructing duality

invariant terms using Riemann tensors constructed out of canonical Einstein metric does

not work since all such terms vanish in the AdS2 ×S2 near horizon geometry and hence do

not contribute to the entropy function to this order. This of course does not rule out the

existence of duality invariant terms constructed out of other fields. The other possibility

4It was shown in [9] that the leading asymptotic expansion of the entropy to all orders in inverse powers

of charges, associated with the pole at (2.11), is consistent with the OSV formula [43] after inclusion of

certain additional measure factors. Refs. [44–46] independently derived the same measure factor in the

semiclassical approximation by requiring that the entropy is invariant under duality transformations. Our

goal is to derive a general formula for the entropy of an extremal black hole based on some principle (like

AdS/CFT) from which the results of [9, 44–46] would follow. In particular if one can establish that the

asymptotic expansion of the quantum entropy function reduces to the formula given in [9, 44–46], this will

automatically prove that the quantum entropy function agrees with the statistical entropy to all orders in

inverse powers of charges.
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is that these contributions cannot be encoded in a local Lagrangian density, but come

from the non-local contributions to the quantum entropy function arising from the path

integral over string fields in the near horizon geometry. To this end we note that since

the OSV formula reproduces the complete asymptotic expansion to all orders in q−2, if we

can derive the OSV formula from the quantum entropy function we shall automatically

reproduce these corrections to the statistical entropy.

4 Exponentially suppressed corrections

In this section we shall analyze the exponentially suppressed contributions from the zeroes

of Φ10 given in (2.24):

n2(σ̌ρ̌− v̌2) + jv̌ + n1σ̌ −m1ρ̌+m2 = 0 , (4.1)

with

m1, n1,m2, n2 ∈ Z, j ∈ 2Z + 1, m1n1 +m2n2 +
j2

4
=

1

4
. (4.2)

For this we define

Ω̌ =

(
ρ̌ v̌

v̌ σ̌

)
, (4.3)

and look for a symplectic transformation of the form:

(
ρ v

v σ

)
≡ Ω = (AΩ̌ +B)(CΩ̌ +D)−1 , (4.4)

such that

v =
n2(σ̌ρ̌− v̌2) + jv̌ + n1σ̌ −m1ρ̌+m2

det(CΩ̌ +D)
. (4.5)

Here

(
A B

C D

)
is a 4 × 4 symplectic matrix. In this case (4.1) gets mapped to v = 0. On

the other hand the modular transformation law of Φ10 gives

Φ10(ρ̌, σ̌, v̌) = {det(CΩ̌ +D)}−k Φ10(ρ, σ, v) , k = 10 . (4.6)

Thus the behaviour of Φ10(ρ̌, σ̌, v̌) near the zero (4.1) is given by

Φ10(ρ̌, σ̌, v̌) = −{det(CΩ̌ +D)}−k 4π2 v2 g(ρ) g(v) + O(v4) , g(ρ) = η(ρ)24 . (4.7)

We can now substitute (4.7) into (2.1) (with Φ̌ replaced by Φ10) and evaluate the integral

over v̌ using residue theorem. For this we need to regard (ρ, σ, v) appearing in (4.7) as

functions of (ρ̌, σ̌, v̌) via eq. (4.4), (4.5). The result is, up to a sign,

(−1)Q·P

∫
dρ̌ dσ̌ e−πi(ρ̌P 2+σ̌Q2+2v̌Q·P ) det(CΩ̌ +D)k+2 (2n2v̌ − j)−2

×g(ρ)−1 g(σ)−1 (Q · P + O(1)) , (4.8)
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where v̌ and (ρ, σ) are to be regarded as functions of (ρ̌, σ̌) via eqs. (4.1) and (4.4). The

last factor in (4.8) proportional to Q ·P comes from taking the derivative of the integrand

other than the pole term with respect to v̌. We can now evaluate the (ρ̌, σ̌) integral using

the saddle point method. To leading order the location of the saddle point is obtained by

extremizing the term in the exponent of (4.8) subject to the constraint (4.1). The result is

given in eq. (2.26):

(ρ̌, σ̌,−v̌) =
i

2n2

√
Q2P 2 − (Q · P )2

(Q2, P 2, Q · P ) − 1

n2

(
n1,−m1,

j

2

)
. (4.9)

The result of the integration over (ρ̌, σ̌) can be expressed as

(−1)Q·P
[
exp

(
−πi(ρ̌P 2 + σ̌Q2 + 2v̌Q · P )

)
det(CΩ̌ +D)k+2 (2n2v̌ − j)−2 g(ρ)−1 g(σ)−1

× (Q · P + O(1))
(
(det ∆)−1/2 + O(1)

)]
saddle

, (4.10)

where the subscript ‘saddle’ denotes that we need to set (ρ̌, σ̌, v̌) to their saddle point values

given in (4.9), and ∆ is the 2 × 2 matrix:

∆ = iQ · P
(
∂2v̌/∂ρ̌2 ∂2v̌/∂ρ̌∂σ̌

∂2v̌/∂ρ̌∂σ̌ ∂2v̌/∂σ̌2

)
. (4.11)

In evaluating (4.11) we need to regard v̌ as a function of (ρ̌, σ̌) via eq. (4.1). Explicit

computation gives

det∆ = (Q · P )2 n2
2/(2n2v̌ − j)4 . (4.12)

Substituting this and (4.9) into (4.10) gives

1

n2
exp

(
π
√
Q2P 2 − (Q · P )2/n2

) [
det(CΩ̌ +D)k+2 g(ρ)−1 g(σ)−1 (1 + O(q−2))

]
saddle

×(−1)Q·P exp
[
iπ(n1P

2 −m1Q
2 + jQ · P )/n2

]
, (4.13)

where we have how fixed the overall sign by requiring that it agrees with the result of [22]

for (m1, n1, n2,m2, j) = (0, 0, 1, 0, 1).

In order to evaluate the factor det(CΩ̌ +D)k+2 g(ρ)−1 g(σ)−1 appearing in (4.13) ex-

plicitly, we need to find explicitly the matrix

(
A B

C D

)
satisfying (4.5). We shall do this

explicitly for n2 = 2. In this case there are six possible values of (~m,~n, j) consistent

with (2.25), (4.2). They are

(m1, n1,m2, n2, j) = (0, 0, 0, 2, 1), (1, 0, 0, 2, 1), (0, 1, 0, 2, 1),

(0, 0,−1, 2, 3), (1, 0,−1, 2, 3), (0, 1,−1, 2, 3) . (4.14)
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Q2 2 4 6 6 6 6

P 2 2 4 6 6 6 6

Q · P 0 0 0 1 2 3

∆d(Q,P ) 34.617 480.638 18537.1 20104.8 27652.3 0

Table 2. First exponentially suppressed contribution to d(Q,P ) and Sstat(Q,P ). Note that the

correction vanishes accidentally for Q · P = Q2/2 = P 2/2 odd.

In each of these cases we can find appropriate matrices

(
A B

C D

)
satisfying (4.5). These

transformations take the form:

Ω =

(
ρ̌

(1−2v̌)2−4ρ̌σ̌
−2v̌2+v̌+2ρ̌σ̌
(1−2v̌)2−4ρ̌σ̌

−2v̌2+v̌+2ρ̌σ̌
(1−2v̌)2−4ρ̌σ̌

σ̌
(1−2v̌)2−4ρ̌σ̌

)
,

Ω =

(
ρ̌

4(v̌−1)v̌+2ρ̌−4ρ̌σ̌+1
−2v̌2+v̌+ρ̌(2σ̌−1)

4(v̌−1)v̌+2ρ̌−4ρ̌σ̌+1
−2v̌2+v̌+ρ̌(2σ̌−1)

4(v̌−1)v̌+2ρ̌−4ρ̌σ̌+1
2(v̌−1)v̌+ρ̌−2ρ̌σ̌+σ̌
4(v̌−1)v̌+2ρ̌−4ρ̌σ̌+1

)
,

Ω =

(
−2(v̌−1)v̌+ρ̌+2ρ̌σ̌+σ̌
(1−2v̌)2−2(2ρ̌+1)σ̌

−2v̌2+v̌+2ρ̌σ̌+σ̌
(1−2v̌)2−2(2ρ̌+1)σ̌

−2v̌2+v̌+2ρ̌σ̌+σ̌
(1−2v̌)2−2(2ρ̌+1)σ̌

σ̌
(1−2v̌)2−2(2ρ̌+1)σ̌

)
,

(
ρ̌

(v̌−1)2−ρ̌σ̌
1−v̌

(v̌−1)2−ρ̌σ̌
− 2

1−v̌
(v̌−1)2−ρ̌σ̌

− 2 σ̌
(v̌−1)2−ρ̌σ̌

)
,

Ω =

(
− (1−2v̌)2−4ρ̌σ̌

−2v̌+ρ̌+σ̌+1 − v̌(2v̌−3)+ρ̌−2ρ̌σ̌+1
−2v̌+ρ̌+σ̌+1

− v̌(2v̌−3)+ρ̌−2ρ̌σ̌+1
−2v̌+ρ̌+σ̌+1 − v̌2−(ρ̌+1)σ̌

−2v̌+ρ̌+σ̌+1

)
,

Ω =

(
− v̌(3v̌−4)−ρ̌−3ρ̌σ̌−σ̌+1

−2(v̌−1)v̌+ρ̌+2ρ̌σ̌+σ̌
v̌−ρ̌−1

−2(v̌−1)v̌+ρ̌+2ρ̌σ̌+σ̌ + 1
v̌−ρ̌−1

−2(v̌−1)v̌+ρ̌+2ρ̌σ̌+σ̌ + 1 −2ρ̌−1
−2(v̌−1)v̌+ρ̌+2ρ̌σ̌+σ̌ + 2

)
. (4.15)

These transformations can be used to get ρ and σ in terms of (Q2, P 2, Q · P ) using (4.9).

Substituting these into (4.13) and summing over the allowed values of (m1, n1, j) given

in (4.14) we get the correction to d(Q,P ) = exp(Sstat) to this order. If we denote the

resulting correction to d(Q,P ) by ∆d(Q,P ), then the values of ∆d(Q,P ) for different

values of (Q2, P 2, Q · P ) have been shown in table 2.

5 Macroscopic origin of the exponentially suppressed corrections

We have seen that the corrections to the leading contribution to the statistical entropy are

of two types, power suppressed corrections which arise from expansion about the saddle

point associated with pole (2.11), and exponentially suppressed corrections associated with

the contribution from the residues at the other poles (2.24). Given that we have not been

able to reproduce even the power suppressed corrections from the macroscopic side, it may

seem futile to attempt to understand the exponentially suppressed corrections. However

we shall now argue that quantum entropy function may provide a natural mechanism for

understanding the exponentially suppressed corrections.
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We shall begin with a lightening review of the quantum entropy function. Let us

consider an extremal black hole with an AdS2 factor in the near horizon geometry. We

shall regard string theory in this background as a two dimensional theory, treating all other

directions as compact. The background fields describing the AdS2 near horizon geometry

has the form [47]

ds2 = v

(
−(r2 − 1)dt2 +

dr2

r2 − 1

)
, F

(i)
rt = ei, · · · (5.1)

where F
(i)
µν = ∂µA

(i)
ν − ∂νA

(i)
µ are the gauge field strengths associated with two dimensional

gauge fields A
(i)
µ , v and ei are constants and · · · denotes near horizon values of other fields.

Under euclidean continuation

t = −iθ , (5.2)

we have

ds2 = v

(
(r2 − 1)dθ2 +

dr2

r2 − 1

)
, F

(i)
rθ = −i ei, · · · (5.3)

Under a further coordinate change

r = cosh η , (5.4)

(5.3) takes the form

ds2 = v
(
dη2 + sinh2 η dθ2

)
, F

(i)
θη = iei sinh η, · · · .

The metric is non-singular at the point η = 0 if we choose θ to have period 2π. Integrating

the field strength we can get the form of the gauge field:

A(i)
µ dxµ = −i ei (cosh η−1)dθ = −i ei (r−1)dθ . (5.5)

Note that the −1 factor inside the parenthesis is required to make the gauge fields non-

singular at η = 0. In writing (5.5) we have chosen A
(i)
η = 0 gauge. If qi denotes the charge

of the black hole corresponding to the ith gauge field and L denotes the Lagrangian density

evaluated in the near horizon geometry (5.5), then ~q and ~e are related as

qi =
∂(vL)

∂ei
. (5.6)

Quantum entropy function is a proposal for computing the exact degeneracy of states

of an extremal black hole. It is given by

d(~q) =

〈
exp

[
− iqi

∮
dθ A

(i)
θ

]〉finite

AdS2

, (5.7)

where 〈 〉AdS2
denotes the unnormalized path integral over various fields of string theory

on euclidean global AdS2 described in (5.5) and A
(i)
θ denotes the component of the i-th

gauge field along the boundary of AdS2. The superscript ‘finite’ refers to the finite part

of the amplitude defined as follows. If we regularize the infra-red divergence by putting an

explicit cut-off that regularizes the volume of AdS2, then the amplitude has the form eCL×
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a finite part where C is a constant and L is the length of the boundary of regulated AdS2.

We define the finite part as the one obtained by dropping the eCL part. This equation

gives a precise relation between the microscopic degeneracy and an appropriate partition

function in the near horizon geometry of the black hole.

In defining the path integral over AdS2 we need to put boundary conditions on various

fields. We require that the asymptotic geometry coincides with (5.5). Special care is needed

to fix the boundary condition on A
(i)
θ . In the A

(i)
η = 0 gauge the Maxwell’s equation around

this background has two independent solutions near the boundary: A
(i)
θ = constant and

A
(i)
θ ∝ r. Since the latter is the dominant mode we put boundary condition on the latter

mode, allowing the constant mode of the gauge field to fluctuate. This corresponds to

working with fixed asymptotic values of the electric fields, or equivalently fixed charges via

eq. (5.6).

Let us now review how in the classical limit the quantum entropy function reduces to

the exponential of the Wald entropy. For this we need to put an infra-red cut-off; this is

done by restricting the coordinate r in the range 1 ≤ r ≤ r0. Then in the classical limit

the quantum entropy function is given by the finite part of

exp

(
−Abulk −Aboundary − iqi

∮
A

(i)
θ dθ

)
, (5.8)

where Abulk and Aboundary represent contributions from the bulk and the boundary terms

in the classical action in the background (5.5). If L denotes the Lagrangian density of the

two dimensional theory, then the bulk contribution to the action in the background (5.5)

takes the form:

Abulk = −
∫
d2x

√
det gL

= −
∫ 2π

0
dθ

∫ cosh−1 r0

0
dη sinh η vL

= −2π vL (r0 − 1) + O(r−1
0 ) . (5.9)

In going from the second to the third step in (5.9) we have used the fact that due to the

SO(2, 1) invariance of the AdS2 background, L must be independent of η and θ. In this

parametrization the length L of the boundary is given by

L =
√
v

∫ 2π

0

√
r20 − 1 dθ = 2π

√
v r0 + O(r−1

0 ) . (5.10)

The contribution from the last term in (5.8) can also be calculated easily using the expres-

sion for A
(i)
θ given in (5.5). We get

iqi

∮
A

(i)
θ dθ = 2π ~q · ~e(r0 − 1) . (5.11)

Finally, the contribution from Aboundary can be shown to have the form [4]

Aboundary = 2πr0K + O(r−1
0 ) , (5.12)
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for some constant K. This gives

exp

(
−Abulk −Aboundary − iqi

∮
A

(i)
θ dθ

)
= exp

[
−2πr0(~q · ~e− vL +K) + O(r−1

0 )
]

× exp [2π(~q · ~e− vL)] . (5.13)

Thus the quantum entropy function, given by the finite part of (5.13), takes the form

d(q) ≃ exp [2π(~q · ~e− v L)] . (5.14)

The right hand side of (5.14) is the exponential of the Wald entropy [3].5 For the particular

case of quarter BPS black holes in N = 4 supersymmetric string theories the leading

contribution to (5.14) has the form

d(q) ≃ exp
(
π
√
Q2P 2 − (Q · P )2

)
. (5.15)

Quantum corrections to (5.14) can be of two types. First of all we can have fluctuations

of the string field around the AdS2 background (5.3). We expect this to produce power

law corrections, but not change the exponent in (5.15) which is related to the finite part of

the action in the AdS2 background. The other class of corrections could come from picking

altogether different classical solutions with the same asymptotic field configuration as the

one given in (5.3). These could have different actions and hence give contributions with

different exponential factors. Thus such corrections are the ideal candidates for producing

exponentially subleading corrections to the degeneracy.

Can we identify classical solutions which could produce the subleading corrections

discussed in § 4? To this end consider a ZN quotient of the background (5.3) by the

transformation

θ → θ +
2π

N
. (5.16)

If we denote by (r̃, θ̃) the coordinates of this new space then the solution may be expressed as

ds2 = v

(
(r̃2 − 1)dθ̃2 +

dr̃2

r̃2 − 1

)
, F

(i)

ereθ = −i ei, · · · , θ̃ ≡ θ̃ +
2π

N
. (5.17)

Since θ̃ has a different period than θ, this does not manifestly have the same asymptotic

form as the solution (5.3). Let us now make a change of coordinates

r = r̃/N, θ = Nθ̃ . (5.18)

In this coordinate system the new metric takes the form:

ds2 = v

(
(r2 −N−2)dθ2 +

dr2

r2 −N−2

)
, F

(i)
rθ = −i ei, · · · , θ ≡ θ + 2π . (5.19)

This has the same asymptotic behaviour as the original solution and hence is a potential

saddle point that could contribute to the quantum entropy function. The action associated

5For the special case of two derivative actions this has also been noted recently in [48].
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with this solution, with the cut-off r ≤ r0, can be easily calculated. After removing the

r0 dependent piece we get the following classical contribution to the quantum entropy

function6

exp [2π(~q · ~e− v L)/N ] = exp
(
π
√
Q2P 2 − (Q · P )2/N

)
. (5.20)

This has precisely the right form as the exponentially subleading contributions described

in § 4 if we identify N with the integer n2 appearing there.

This however cannot be the complete story. From the form of the solution given

in (5.17) it is clear that the the solution has a ZN orbifold singularity of the type R
2/ZN

at the origin r̃ = 1. This is a priori a singular configuration and it is not clear if this is an

allowed configuration in string theory. We resolve this difficulty by accompanying the ZN

action by an internal ZN transformation

φ→ φ− 2π

N
, (5.21)

where φ is the azimuthal coordinate of the sphere S2 that is also part of the near horizon

geometry of the black hole. If ψ denotes the polar angle on S2 then the orbifold group has

fixed points at (r̃ = 1, ψ = 0) and (r̃ = 1, ψ = π). Thus the manifold is still singular but

now the singularities are of the type C
2/ZN , and these can certainly be resolved in string

theory. Thus we conclude that the resulting configuration is non-singular. The classical

action is not affected by the additional shifts in the φ coordinate and hence the contribution

to the quantum entropy function continues to be given by (5.20).

There is however a new issue that we need to address. Now the identification θ ≡ θ+2π

changes to

(θ, φ) ≡
(
θ + 2π, φ − 2π

N

)
. (5.22)

Thus one needs to check if this is consistent with the asymptotic boundary conditions

imposed on various fields. To this end we note that if we denote by Aµ the two di-

mensional gauge field arising from the φ translation isometry, then the twisted boundary

condition (5.23) is equivalent to switching on a Wilson line of the form

∮
Aθ dθ =

2π

N
. (5.23)

Now as discussed earlier, for all gauge fields the boundary conditions fix the electric field,

or equivalently the charge, but the zero modes of the gauge fields are allowed to fluctuate.

Here the charge associated with the gauge field Aµ is the angular momentum [49] which

has been taken to be zero. But there is no constraint on the Wilson line
∮
Aθ dθ. Thus

we are instructed to integrate over different possible values of this Wilson line, and in

that process pick up contribution from the different saddle points given in (5.19). This

shows that there is no conflict between the asymptotic boundary conditions and the twist

described in (5.22).

6This is easiest to derive in the (er, eθ) coordinate system where the total action is 1/N times the action

for the original AdS2 background with r0 replaced by er0. Since er0 = Nr0, the terms linear in r0 are the

same as in the original AdS2 background, whereas the r0 independent term gets divided by N .
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Another issue that needs attention is integration over bosonic and fermonic zero modes

associated with this solution. The near horizon geometry of the black hole has an N = 4

superconformal algebra. The generators of this algebra are the SL(2, R) generators L0,

L±1, the SU(2) generators J3, J± and the supersymmetry generators G±α
± 1

2

. with α = 1, 2.

Of these (L1 − L−1)/2 is the generator of rotation about the origin of AdS2 and J3 is the

generator of rotation about the north pole of S2. Since the orbifold action is generated

by (L1 − L−1 − 2J3), the quotient is not invariant under the full N = 4 superconformal

algebra; it is invariant only under a subalgebra that commutes with (L1−L−1−2J3). This

subalgebra is generated by L1−L−1, J
3, G+α

1/2+G
+α
−1/2 andG−α

1/2−G
−α
−1/2. The broken bosonic

and fermionic generators leads to four bosonic and four fermionic zero modes of the solution.

Of these the bosonic zero modes parametrize the coset (SL(2, R)/U(1)) × (SU(2)/U(1)) =

AdS2 × S2. This is precisely the situation analyzed in [50].7 Naively the integration over

the bosonic zero modes will produce infinite result and the fermionic zero mode integrals

vanish. But it was shown in [50] that we can regularize the inregrals by adding to the action

an extra term that does not affect the integral. The extra term lifts both the bosonic and

the fermionic zero modes and as a result the path integral produces a finite result.

There are several other minor issues which need to be addressed. For type II string

theory in flat space-time, the ZN orbifold action described here generates an allowed con-

figuration. Here we have an AdS2×S2 background instead of flat space. Hence the original

analysis is not strictly valid. However since the orbifold fixed point is localized in AdS2×S2,

it should not ‘feel’ the effect of the background geomery and continue to be an allowed

configuration. What is not guaranteed is that the blow up modes which allow us to de-

form the configuration away from the orbifold point will remain flat directions. This is an

important issue we need to address if we want to explore the constant multiplying (5.20).

We also need to explore if there can be any additional contribution to the action from the

orbifold fixed point. We expect however that since the fixed point is localized at a point

in AdS2 ×S2, to leading order such a contribution (if non-zero) will be independent of the

background geometry of AdS2 × S2. In particular it will not have a factor proportional to

the size of AdS2 × S2, and hence will at most give an order q0 correction to the leading

term π
√
Q2P 2 − (Q · P )2/N in the exponent of (5.20).

The analysis described above is independent of which kind of extremal black hole we are

considering.8 This suggests a universal pattern of the exponentially suppressed corrections

to the entropy of all extremal black holes. If we denote by S0 the leading contribution

to the entropy then the exact degeneracy should contain subleading corrections of order

eS0/N for all N ∈ Z, N ≥ 2. It will be interesting to see if the exact degeneracy formulæ of

extremal black holes in theories with less number of supersymmetries obey this structure.
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[gr-qc/9307038] [SPIRES].

[3] A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity,

JHEP 09 (2005) 038 [hep-th/0506177] [SPIRES].

[4] A. Sen, Quantum entropy function from AdS2/CFT1 correspondence, arXiv:0809.3304

[SPIRES].

[5] R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Counting dyons in N = 4 string theory,

Nucl. Phys. B 484 (1997) 543 [hep-th/9607026] [SPIRES].

[6] G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Asymptotic degeneracy of dyonic

N = 4 string states and black hole entropy, JHEP 12 (2004) 075 [hep-th/0412287]

[SPIRES].

[7] D. Shih, A. Strominger and X. Yin, Recounting dyons in N = 4 string theory,

JHEP 10 (2006) 087 [hep-th/0505094] [SPIRES].

[8] D. Gaiotto, Re-recounting dyons in N = 4 string theory, hep-th/0506249 [SPIRES].

[9] D. Shih and X. Yin, Exact black hole degeneracies and the topological string,

JHEP 04 (2006) 034 [hep-th/0508174] [SPIRES].

[10] D.P. Jatkar and A. Sen, Dyon spectrum in CHL models, JHEP 04 (2006) 018

[hep-th/0510147] [SPIRES].

[11] J.R. David, D.P. Jatkar and A. Sen, Product representation of dyon partition function in

CHL models, JHEP 06 (2006) 064 [hep-th/0602254] [SPIRES].

[12] A. Dabholkar and S. Nampuri, Spectrum of dyons and black holes in CHL orbifolds using

Borcherds lift, JHEP 11 (2007) 077 [hep-th/0603066] [SPIRES].

[13] J.R. David and A. Sen, CHL dyons and statistical entropy function from D1 −D5 system,

JHEP 11 (2006) 072 [hep-th/0605210] [SPIRES].

[14] J.R. David, D.P. Jatkar and A. Sen, Dyon spectrum in N = 4 supersymmetric type-II string

theories, JHEP 11 (2006) 073 [hep-th/0607155] [SPIRES].

[15] J.R. David, D.P. Jatkar and A. Sen, Dyon spectrum in generic N = 4 supersymmetric Z(N)

orbifolds, JHEP 01 (2007) 016 [hep-th/0609109] [SPIRES].

[16] A. Dabholkar and D. Gaiotto, Spectrum of CHL dyons from genus-two partition function,

JHEP 12 (2007) 087 [hep-th/0612011] [SPIRES].

[17] A. Sen, Walls of marginal stability and dyon spectrum in N = 4 supersymmetric string

theories, JHEP 05 (2007) 039 [hep-th/0702141] [SPIRES].

[18] A. Dabholkar, D. Gaiotto and S. Nampuri, Comments on the spectrum of CHL dyons,

JHEP 01 (2008) 023 [hep-th/0702150] [SPIRES].

[19] N. Banerjee, D.P. Jatkar and A. Sen, Adding charges to N = 4 dyons, JHEP 07 (2007) 024

[arXiv:0705.1433] [SPIRES].

– 22 –

http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://arxiv.org/abs/hep-th/9601029
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9601029
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://arxiv.org/abs/gr-qc/9307038
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9307038
http://dx.doi.org/10.1088/1126-6708/2005/09/038
http://arxiv.org/abs/hep-th/0506177
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0506177
http://arxiv.org/abs/0809.3304
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.3304
http://dx.doi.org/10.1016/S0550-3213(96)00640-2
http://arxiv.org/abs/hep-th/9607026
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9607026
http://dx.doi.org/10.1088/1126-6708/2004/12/075
http://arxiv.org/abs/hep-th/0412287
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412287
http://dx.doi.org/10.1088/1126-6708/2006/10/087
http://arxiv.org/abs/hep-th/0505094
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0505094
http://arxiv.org/abs/hep-th/0506249
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0506249
http://dx.doi.org/10.1088/1126-6708/2006/04/034
http://arxiv.org/abs/hep-th/0508174
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0508174
http://dx.doi.org/10.1088/1126-6708/2006/04/018
http://arxiv.org/abs/hep-th/0510147
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0510147
http://dx.doi.org/10.1088/1126-6708/2006/06/064
http://arxiv.org/abs/hep-th/0602254
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0602254
http://dx.doi.org/10.1088/1126-6708/2007/11/077
http://arxiv.org/abs/hep-th/0603066
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0603066
http://dx.doi.org/10.1088/1126-6708/2006/11/072
http://arxiv.org/abs/hep-th/0605210
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0605210
http://dx.doi.org/10.1088/1126-6708/2006/11/073
http://arxiv.org/abs/hep-th/0607155
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0607155
http://dx.doi.org/10.1088/1126-6708/2007/01/016
http://arxiv.org/abs/hep-th/0609109
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0609109
http://dx.doi.org/10.1088/1126-6708/2007/12/087
http://arxiv.org/abs/hep-th/0612011
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0612011
http://dx.doi.org/10.1088/1126-6708/2007/05/039
http://arxiv.org/abs/hep-th/0702141
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0702141
http://dx.doi.org/10.1088/1126-6708/2008/01/023
http://arxiv.org/abs/hep-th/0702150
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0702150
http://dx.doi.org/10.1088/1126-6708/2007/07/024
http://arxiv.org/abs/0705.1433
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.1433


J
H
E
P
0
5
(
2
0
0
9
)
1
2
1

[20] A. Sen, Two centered black holes and N = 4 dyon spectrum, JHEP 09 (2007) 045

[arXiv:0705.3874] [SPIRES].

[21] M.C.N. Cheng and E. Verlinde, Dying dyons don’t count, JHEP 09 (2007) 070

[arXiv:0706.2363] [SPIRES].

[22] A. Sen, Black hole entropy function, attractors and precision counting of microstates,

Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [SPIRES].

[23] S. Banerjee, A. Sen and Y.K. Srivastava, Generalities of quarter BPS dyon partition function

and dyons of torsion two, JHEP 05 (2008) 101 [arXiv:0802.0544] [SPIRES].

[24] S. Banerjee, A. Sen and Y.K. Srivastava, Partition functions of torsion > 1 dyons in

heterotic string theory on T 6, JHEP 05 (2008) 098 [arXiv:0802.1556] [SPIRES].

[25] A. Dabholkar, J. Gomes and S. Murthy, Counting all dyons in N = 4 string theory,

arXiv:0803.2692 [SPIRES].

[26] M.C.N. Cheng and E.P. Verlinde, Wall crossing, discrete attractor flow and Borcherds

algebra, arXiv:0806.2337 [SPIRES].

[27] S. Govindarajan and K. Gopala Krishna, Generalized Kac-Moody algebras from CHL dyons,

JHEP 04 (2009) 032 [arXiv:0807.4451] [SPIRES].

[28] S. Banerjee, A. Sen and Y.K. Srivastava, Genus two surface and quarter BPS dyons: the

contour prescription, JHEP 03 (2009) 151 [arXiv:0808.1746] [SPIRES].

[29] M.C.N. Cheng and A. Dabholkar, Borcherds-Kac-Moody symmetry of N = 4 dyons,

arXiv:0809.4258 [SPIRES].

[30] J.R. David, On the dyon partition function in N = 2 theories, JHEP 02 (2008) 025

[arXiv:0711.1971] [SPIRES].

[31] R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole Farey tail,

hep-th/0005003 [SPIRES].

[32] J. Manschot and G.W. Moore, A modern Farey tail, arXiv:0712.0573 [SPIRES].

[33] A. Gregori et al., R2 corrections and non-perturbative dualities of N = 4 string ground

states, Nucl. Phys. B 510 (1998) 423 [hep-th/9708062] [SPIRES].

[34] J. Igusa, On Siegel modular varieties of genus two, Amer. J. Math. 84 (1962) 175.

[35] J. Igusa, On Siegel modular varieties of genus two. II, Amer. J. Math. 86 (1962) 392.

[36] T. Eguchi, H. Ooguri, A. Taormina and S.-K. Yang, Superconformal algebras and string

compactification on manifolds with SU(N) holonomy, Nucl. Phys. B 315 (1989) 193

[SPIRES].

[37] G. Lopes Cardoso, B. de Wit and T. Mohaupt, Corrections to macroscopic supersymmetric

black-hole entropy, Phys. Lett. B 451 (1999) 309 [hep-th/9812082] [SPIRES].

[38] G. Lopes Cardoso, B. de Wit and T. Mohaupt, Macroscopic entropy formulae and

non-holomorphic corrections for supersymmetric black holes, Nucl. Phys. B 567 (2000) 87

[hep-th/9906094] [SPIRES].

[39] T. Mohaupt, Black hole entropy, special geometry and strings, Fortsch. Phys. 49 (2001) 3

[hep-th/0007195] [SPIRES].

[40] A. Sen, Entropy function for heterotic black holes, JHEP 03 (2006) 008 [hep-th/0508042]

[SPIRES].

– 23 –

http://dx.doi.org/10.1088/1126-6708/2007/09/045
http://arxiv.org/abs/0705.3874
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.3874
http://dx.doi.org/10.1088/1126-6708/2007/09/070
http://arxiv.org/abs/0706.2363
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0706.2363
http://dx.doi.org/10.1007/s10714-008-0626-4
http://arxiv.org/abs/0708.1270
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.1270
http://dx.doi.org/10.1088/1126-6708/2008/05/101
http://arxiv.org/abs/0802.0544
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.0544
http://dx.doi.org/10.1088/1126-6708/2008/05/098
http://arxiv.org/abs/0802.1556
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.1556
http://arxiv.org/abs/0803.2692
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.2692
http://arxiv.org/abs/0806.2337
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.2337
http://dx.doi.org/10.1088/1126-6708/2009/04/032
http://arxiv.org/abs/0807.4451
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.4451
http://dx.doi.org/10.1088/1126-6708/2009/03/151
http://arxiv.org/abs/0808.1746
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.1746
http://arxiv.org/abs/0809.4258
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.4258
http://dx.doi.org/10.1088/1126-6708/2008/02/025
http://arxiv.org/abs/0711.1971
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.1971
http://arxiv.org/abs/hep-th/0005003
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0005003
http://arxiv.org/abs/0712.0573
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.0573
http://dx.doi.org/10.1016/S0550-3213(97)00635-4
http://arxiv.org/abs/hep-th/9708062
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9708062
http://dx.doi.org/10.1016/0550-3213(89)90454-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B315,193
http://dx.doi.org/10.1016/S0370-2693(99)00227-0
http://arxiv.org/abs/hep-th/9812082
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9812082
http://dx.doi.org/10.1016/S0550-3213(99)00560-X
http://arxiv.org/abs/hep-th/9906094
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9906094
http://arxiv.org/abs/hep-th/0007195
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0007195
http://dx.doi.org/10.1088/1126-6708/2006/03/008
http://arxiv.org/abs/hep-th/0508042
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0508042


J
H
E
P
0
5
(
2
0
0
9
)
1
2
1

[41] A. Sen, Entropy function and AdS2/CFT1 correspondence, JHEP 11 (2008) 075

[arXiv:0805.0095] [SPIRES].

[42] R.K. Gupta and A. Sen, AdS3/CFT2 to AdS2/CFT1, JHEP 04 (2009) 034

[arXiv:0806.0053] [SPIRES].

[43] H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string,

Phys. Rev. D 70 (2004) 106007 [hep-th/0405146] [SPIRES].

[44] B. de Wit, Supersymmetric black hole partition functions, talk given at Strings 2005, July

11-16, Toronto, Canada (2005).

[45] G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Black hole partition functions and

duality, JHEP 03 (2006) 074 [hep-th/0601108] [SPIRES].

[46] G.L. Cardoso, B. de Wit and S. Mahapatra, Subleading and non-holomorphic corrections to

N = 2 BPS black hole entropy, JHEP 02 (2009) 006 [arXiv:0808.2627] [SPIRES].

[47] J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation,

JHEP 02 (1999) 011 [hep-th/9812073] [SPIRES].

[48] A. Castro, D. Grumiller, F. Larsen and R. McNees, Holographic description of AdS2 black

holes, JHEP 11 (2008) 052 [arXiv:0809.4264] [SPIRES].

[49] D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors,

JHEP 10 (2006) 058 [hep-th/0606244] [SPIRES].

[50] C. Beasley et al., Why ZBH = |Ztop|2, hep-th/0608021 [SPIRES].

– 24 –

http://dx.doi.org/10.1088/1126-6708/2008/11/075
http://arxiv.org/abs/0805.0095
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.0095
http://dx.doi.org/10.1088/1126-6708/2009/04/034
http://arxiv.org/abs/0806.0053
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.0053
http://dx.doi.org/10.1103/PhysRevD.70.106007
http://arxiv.org/abs/hep-th/0405146
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0405146
http://dx.doi.org/10.1088/1126-6708/2006/03/074
http://arxiv.org/abs/hep-th/0601108
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0601108
http://dx.doi.org/10.1088/1126-6708/2009/02/006
http://arxiv.org/abs/0808.2627
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.2627
http://dx.doi.org/10.1088/1126-6708/1999/02/011
http://arxiv.org/abs/hep-th/9812073
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9812073
http://dx.doi.org/10.1088/1126-6708/2008/11/052
http://arxiv.org/abs/0809.4264
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.4264
http://dx.doi.org/10.1088/1126-6708/2006/10/058
http://arxiv.org/abs/hep-th/0606244
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0606244
http://arxiv.org/abs/hep-th/0608021
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0608021

	Introduction and summary
	An overview of statistical entropy function
	Dyon degeneracy
	Asymptotic expansion and statistical entropy function
	Exponentially suppressed corrections
	Organising the asymptotic expansion

	Power suppressed corrections
	Exponentially suppressed corrections
	Macroscopic origin of the exponentially suppressed corrections

